
El Camino
Training - Engineering - Consultancy

El Camino GmbH 1

SD BUS Core

with Avalon Interface

General

Description

The SD BUS Core with Avalon Interface allows for Platform Designer

or Qsys systems to access standard SD, MMC or eMMC flash based

memory devices. It comes with low-level SD Card driver routines for

Nios II and is integrated into the HAL generic device model classes as

a FLASH memory device. Therefore you do not need to write any addi-

tional low level code to read or write raw data from or to SD cards.

El Camino offers an optional stand-alone FAT12/16/32 file system that

can be used to read or write files on SD cards from a NIOS system.

Furhtermore the core is implemented such that it works with the stan-

dard sdhci/sdhci-pltfm Linux drivers e.g. on Altera SoC devices.

Figure 1: Block Diagram

Features Supports Secure Digital Card (SD, SDHC, SDXC), Multimedia

Card (MMC) and embedded Multimedia Card (eMMC)

 1 bit and 4 bit (wide bus) operation

 Compatible with SD Host Controller Standard

Specification V3.01

 Supports High Speed Mode (SDHS) with up to 50 MHz SD Clock

rate

 Low-level Nios II drivers included

 Optional stand-alone FAT12/FAT16/FAT32 file system available

 Compatible with Linux sdhci/sdhci-pltfm drivers

 DMA support for high data throughput

SD

BUS Core

from

El Camino

FPGA

A
v
a
lo

n
 S

w
it
c
h
 F

a
b
ri
c

Avalon CPU

or

Bridge

Other Avalon

Masters/Slaves

S M

M/S

M

March 2019, Version 3.40

El Camino GmbH 3

SD BUS Core - with Avalon Interface

Applications The SD Bus Core is ideal for applications where a mobile, standard and

exchangeable storage media is required for NIOS II or SoC applica-

tions. Together with our Windows utility it is easy to exchange raw data

between a NIOS II application and the PC platform.

When used together with the El Camino SD/MMC loader, FPGA con-

figuration data can be combined with application data or program stor-

age on a removable, common and compact storage media.

Deliverables Platform Designer / Qsys Compliant IP core in Verilog

 Low-level Nios II software drivers for initialization, read and

write access

 Windows Utility for reading and writing raw data (on request)

Architecture

Specification

Figure 2: SD/MMC Bus Core Block Diagram

The SD Bus core has the following interfaces:

 Avalon Interface

- Control Signals

clock and reset signals driven from the Avalon switch fabric

and interrupt signal driven to the Avalon switch fabric

CMD

Control

clock

SD_CMD

Avalon

Interface

reset

DAT

Control
BufferDMA

Register

Set

A
v
a
lo

n
 S

la
v
e

A
v
a
lo

n
 M

a
s
te

r

SD_DATA[3..0]

SD

Bus

Interface

SD_CLK

CDn

WP

LED

El Camino GmbH 4

SD BUS Core - with Avalon Interface

- Avalon Slave Interface

read and write access to the core registers and the data buffer

for non-DMA data transfers

- Avalon Master Interface

connection to a DMA controler inside the core for SDMA

(Single operation DMA) support as specified in the SD Host

Controller Standard Specification

 SD Bus Interface

- CDn

- WP

- LED

- SD_CLK

- SD_CMD

(optional unidirectional signals: _i/_o/_en)

- SD_DAT3...SD_DAT0

(optional unidirectional signals: _i/_o/_en)

The registers provide an interface to the SD Bus core and are visible via

the Avalon slave port. The SD_CLK, SD_CMD, SD_DAT3-

SD_DAT0, CDn and WP ports provide the hardware interface to the SD

card.

The core logic is synchronous to the clock input provided by the Avalon

interface. The Avalon clock is divided to generate the SD_CLK output.

El Camino GmbH 5

SD BUS Core - with Avalon Interface

Table 1: Port Description

Port Direction Function Connect to

SD_CLK output

Clock Signal to the SD/MMC card. This clock is derived from the system

clock by a parameterizable clock divider. The frequency determines the data

rate and is set automatically by the sofware driver

SD card

pin 5

SD_CMD input/output

Bidirectional Command/Response Signal

Optional Unidirectional Signals for implementing external tri-state drivers

SD_CMD_o, SD_CMD_i, SD_CMD_en (enable when high)

SD card

pin 2

SD_DAT[3..0] input/output

Bidirectional Data signals

Optional unidirectional signals for implementing external tri-state drivers

SD_DAT_o[3..0], SD_DAT_i[3..0], SD_DAT_en[3..0] (enable when high)

SD card

SD_DAT3 - pin 1

SD_DAT2 - pin 9

SD_DAT1 - pin 8

SD_DAT0 - pin 7

CDn input

Card Detect signal form the SD card socket

logic 0 -> card is present

logic 1 -> socket empty

SD card connector

card detect switch

WP input

Write Protect signal from the SD card socekt

logic 0 -> card is not write protected

logic 1 -> card is write protected

SD card connector

write protect switch

Common Avalon Control Signals

csi_c0_clk input Avalon clock signal

automatically

connected by

Platform Designer

(Qsys)

csi_c1_clk_sd_clk input

Clock signal driving only the flipflop that generates the SD_CLK output.

This clock can be the same as csi_c0_clk or shifted forward a little

(switches earlier). When this clock is shifted forward it is easier to meet SD

card timing with newer device families like Cyclone 10 GX, Arria 10 or

Stratix 10.

csi_c0_reset_n input Avalon reset signal - low adctive

ins_i0_irq output Avalon interrupt signal

Avalon MM slave interface

avs_s1_writedata[31..0] input Avalon write data bus

automatically

connected by

Platform Designer

(Qsys)

avs_s1_readdata[31..0] output Avalon read data bus

avs_s1_address[5..0] input Avalon address bus

avs_s1_byteanable_n[3..0] input Avalon byteenable signals - active low

avs_s1_chipselect input Avalon chipselect signal

avs_s1_read_n input Avalon read signal - active low

avs_s1_write_n input Avalon write signal - active low

Avalon MM master interface

avm_m1_writedata[31..0] output Avalon write data bus

automatically

connected by

Platform Designer

(Qsys)

avm_m1_readdata[31..0] input Avalon read data bus

avm_m1_address[31..0] output Avalon address bus

avm_m1_byteenable_n[3..0] output Avalon byteenable signals - active low

avm_m1_read_n output Avalon read signal - active low

avm_m1_write_n output Avalon write signal - active low

avm_m1_waitrequest_n input Avalon wait request signal - active low

El Camino GmbH 6

SD BUS Core - with Avalon Interface

Table 2: Qsys Component Settings

Parameter Legal Values Radix Description

Avalon System Clock Frequency

(SYSTEM_CLOCK_FREQUENCY)
1-512 Integer MHz

This parameter is used to set the frequency of the Avalon

clock (csi_c0_clk) driven from the Avalon System Inter-

connect Fabric (SIF) into the core. The parameter needs

to match the actual frequency of the clock connected to

the core in Qsys. The setting is used to pass the system

clock frequency of the core to the software and calculate

the neccessary clock divider.

Card Interface Bus Width

(SD_BUS_WIDTH)

1

4

1 bit mode only

4 bit mode

Integer

This parameter is used to set the maximum SD Bus

width used by the core and the software driver. Legal

values for this parameter are 1 or 4. If set to 1, only

SD_DAT[0] will be used for communication with the

SD card. SD_DAT[3..1] will still be present and can be

left unconnected. A setting of 1 can be used for example

with the Altera Nios Embedded Evaluation Kit (NEEK)

which has only SD_DAT[0] connected.

Enable SD/MMC

High Speed Support

(SD_HS_SUPPORT)

OFF (0)

ON (1)

 high speed off

high speed on

Integer

This parameter is used to turn on or off high speed mode.

High speed mode uses up to 50 MHz clock rates and

requires careful routing of the SD signals. Not every

hardware implementation will support high speed mode,

which is why automatic switching to high speed mode

can be turned off here.

Export Unidirectional Card Interface

(UNIEN)

OFF (0)

ON (1)

bidirectional

unidirectional

Integer

This parameter allows to export separate input, output

and enable signals for CMD and DAT. With these sig-

nals external tri-state drivers can be implemented.

Card Sot Type:

Removable

Embedded

0

1

Integer
This affects the „Slot Type“ bits in the capabilities regis-

ter that can be read by the software driver.

Enable 1.8V support for embedded

device

OFF (0)

ON (1)

This affects the „Voltage Support 1.8V“ bit in the capa-

bilities register that can be read by the software driver.

El Camino GmbH 7

SD BUS Core - with Avalon Interface

Figure 3: Platform Designer (Qsys) Component GUI

El Camino GmbH 8

SD BUS Core - with Avalon Interface

Integration

into Qsys

System

The following picture shows a typical Platform Designer (Qsys) system

with a NIOS processor and an SD Bus core. The master (DMA) inter-

face connections of the SD Bus core is highlighted.

The Avalon MM Slave port should be connected to the CPU, so that it

can access the registers in the core.

The Avalon MM Master port needs to be connected to the memory, that

holds the read and write buffers, passed to the HAL flash API.

Figure 4: Typical Qsys system featuring a NIOS II CPU and the SD Bus Core

El Camino GmbH 9

SD BUS Core - with Avalon Interface

Connecting

the Core to an

SD Card

The following picture shows how to connect the SD Bus Core to an SD

card. If the SD_BUS_WIDTH parameter is set to 4 the software driver

will use the 4-bit mode and all four data signals (SD_DAT[3..0]) need

to be connected.

Figure 5: Connecting the SD Bus Core

(1) Recommended Pull-up resistors are 10kOhm

SD_CLK

SD_CMD

SD_DAT3

SD_DAT0

CDn

Avalon MM

Master

SD Bus Core

 SD

(top view)
DAT3 - 1
CMD - 2
VSS - 3
VDD - 4
CLK - 5
VSS - 6

DAT0 - 7

VCC
(1)

DAT1 - 8

DAT2 - 9

WP

VCC VCC VCC VCC VCC

Avalon MM

Slave

VCC VCC

SD_DAT2

SD_DAT1

LED

csi_clockreset_clk

csi_clockreset_reset_n

ins_irq0_irq

El Camino GmbH 10

SD BUS Core - with Avalon Interface

Register Model

An Avalon master peripheral controls and communicates with the SD

Bus core via registers, devided into 9 parts as listed below:

Figure 6: Coarse Register Map

SD Command Generation0F-00h

Response1F-10h

Buffer Data Port23-20h

Host Controls2F-24h

Interrupt Controls3D-30h

Capabilities4F-40h

Force Event53-50h

ADMA5F-54h

Reserved

Common AreaFF-F0h

Buffer

Register Set

El Camino GmbH 11

SD BUS Core - with Avalon Interface

white areas not implemented in current version of the core

Register Description

Please see the SD Host Controller Standard Specification, Version 3.00

for a detailed register description

Table 3: Fine Register Map for SD Bus Core

Offset 15..8 7..0 Offset 15..8 7..0

002h SDMA System Address (High) 000h SDMA System Address (Low)

006h Block Count 004h Block Size

00Ah Argument1 008h Argument0

00Eh Command 00Ch Transfer Mode

012h Response1 010h Response0

016h Response3 014h Response2

01Ah Response5 018h Response4

01Eh Response7 01Ch Response6

022h Buffer Data Port1 020h Buffer Data Port0

026h Present State 024h Present State

02Ah Wakeup Control Block Gap Control 028h Power Control Host Control

02Eh Software Reset Timeout Control 02Ch Clock Control

032h Error Interrupt Status 030h Normal Interrupt Status

036h Error Interrupt Status Enable 034h Normal Interrupt Status Enable

03Ah Error Interrupt Signal Enable 038h Normal Interrupt Signal Enable

03Eh --- 03Ch Auto CMD12 Error Status

042h Capabilities 040h Capabilities

046h Reserved 044h Reserved

04Ah Maximum Current Capabilities 048h Maximum Current Capabilities

04Eh Reserved 04Ch Reserved

052h Force Event for Error Interrupt Status 050h Force Event for Auto CMD12 Error Status

--- 054h --- ADMA Error Status (1)

05Ah ADMA System Address [31..16] (1) 058h ADMA System Address [15..0] (1)

05Eh ADMA System Address [63..48] (1) 05Ch ADMA System Address [47..32] (1)

--- ---

0F2h --- 0F0h ---

--- ---

0FEh Host Controller Version 0FCh Slot Interrupt Status

El Camino GmbH 12

SD BUS Core - with Avalon Interface

Resource

Utilization and

Performance

The following results are based on synthesis and place & route in

Quartus II Version 13.1. The maximum frequency of the data transfer is

limited by both the maximum system frequency of the SOPC builder

block and the maximum SD_CLK frequency of the SD card.

Read/Write performance as shown in the following table will largely

depend on the type of SD card used.

Timing Requirements

In order to support high speed mode (up to 50 MHz SD clock rate) the

following I/O timing requirements have to be met on SD interface sig-

nals.

1. tco of SD_CMD, SD_DAT[3..0] has to be at least 2 ns greater than

tco of SD_CLK

2. tco of SD_CLK +

board delay of SD_CLK +

maximum board delay of either SD_CMD or SD_DAT[3..0] +

maximum tsu of either SD_CMD or SD_DAT[3..0]

has to be smaller than 6 ns

It is up to the user, to either turn of High Speed support or implement

the necessary timing constraints and ensure they are met.

Table 4: Resources

Device Family

Ressource
Maximum System

Clock
Logic Memory in Bits

Cyclone V 853 ALMs 8192 170 MHz

Arria V 848 ALMs 8192 227 MHz

Stratix V 857 ALMs 8192 420 MHz

MAX 10 2063 LEs 8192 168 MHz

Table 5: Performance

Platform NIOS CPU
Avalon System

Clock

Low Level

Read

Low Level

Write
FAT 32 Read FAT 32 Write

BeMicro CV Cyclone V FPGA

Development Kit

Pretec 1GB industrial SD card

fast 100 MHz 21.98 MB/s 11.22 MB/s 17.72 MB/s 9.33 MB/s

El Camino GmbH 13

SD BUS Core - with Avalon Interface

Nios II

Software

Support

Basic Concept

The SD Bus peripheral is integrated into the HAL generic device model

classes as a FLASH memory device.

The HAL provides a generic device model for nonvolatile flash memo-

ry devices such as SD cards. The HAL API provides functions to write

data to flash. For example, you can use these functions to implement a

SD based filing subsystem.

Although it is not necessary for general, parallel FLASH devices, the

HAL API also provides functions to read flash. For most flash devices,

programs can treat the flash memory space as simple memory when

reading, and do not need to call special HAL API functions. If the flash

device has a special protocol for reading data, just like SD cards, you

must use the HAL API to both read and write data.

The following two NIOS II HAL APIs provide a different level of ac-

cess to the flash:

 Simple flash access

a simple API for writing buffers into flash and reading them back,

which in general does not preserve the prior contents of other flash

erase blocks.

 Fine-grained flash access

finer-grained functions for programs that need control over writ-

ing or erasing individual blocks. This functionality is generally

required for managing a file subsystem.

With SD cards you can write single bytes without the need to erase

whole blocks or sectors. So even when using simple flash access all data

within a sector or block is preserved even when not writing the complete

sector or block. Only for compatibility reasons with other flash devices

it might make sense to use fine-grained flash access even with SD cards.

The API functions for flash devices are defined in sys/alt_flash.h.

Since the SD Bus core uses DMA to transfer data to and

from SD cards it is important to consider cache/memory

coherence when using a NIOS CPU that features a data

cache. It is therefor strongly recommended to allocated the

data buffers for read and write functions in uncached memory or to

bypass the cache (by setting address bit 31 to ’1’) whenever accessing

the read or write buffers from the CPU.

A flush of the data cache before calling the flash HAL functions is not

sufficient as a single cache line may overlap with variables used inside

the driver and the read- or write buffers!

El Camino GmbH 14

SD BUS Core - with Avalon Interface

Simple Flash Access

This interface comprises:

alt_flash_open_dev(), alt_write_flash(), alt_read_flash(), and

alt_flash_close_dev().

Writing and reading can start at any address and can be of any length as

long as one stays within the boundarys of the SD card. For maximum

compatibility with older SD cards however it is recommneded to start

writing only on block boundaris. The block size can be determined with

the „alt_get_flash_info()“ function. The typical block size for most SD

cards is 512 bytes.

The code “Example: Using the Simple Flash API Functions” in the Nios

II Software Developer's Handbook shows the usage of all of these func-

tions in one code example.

Fine Grained Flash Access

There are three additional functions that provide complete control over

writing flash contents at the highest granularity:

alt_get_flash_info(), alt_erase_flash_block(), and

alt_write_flash_block().

These functions are implemented for compatibility reasons with other

flash devices however are not necessary when accessing SD cards.

alt_get_flash_info() reports the region_size and the block_size in

kBytes

The size of the SD card is equivalent to the region_size * 1024 or the

block_size * 1024 * number_of_blocks.

Linux Software

Support

This core is compatible with the Linux sdhci/sdhci-pltfm drivers. It has

been tested on an Altera Cyclone V SoC development kit.

The Altera SoC device tree flow, will automatically add the necessary

parameters to the device tree.

For the sdhci-pltfm driver to work with the device tree flow, the follow-

ing patch from Alistair Pobble is required:

[PATCH 1/5] SDHCI: Add a generic registration to the SDHCI plat-

form driver

El Camino GmbH 15

SD BUS Core - with Avalon Interface

Command Line

Tool

The utility „sd_rd_wr“ allows to read and write raw data from and to SD

cards. The tool provides its own documentation in the form of a help

page, accessible from the command line. To view the help, open a DOS

Command Shell, and type the following command:

sd_rd_wr -h

Usage : sd_rd_wr x: file.dat [-w] [-o:offset] [-b:bytes] [-h]

Prototyping

Hardware

Figure 7: Prototyping Hardware

The IP core can be ordered with a small prototyping board that can be

used together with El Camino or Altera NIOS boards that feature a San-

ta Cruz prototyping header. The schematics of the prototyping hardware

Table 6: sd_rd_wr utility command line options

Paramter

Default when ommitted

Description

reading writing

x: always required always required drive letter of SD card

file.dat always required always required source or desitination file name

-w default
write data from file.dat to SD card

when omitted: read data from SD card and store in file.dat

-o:offset 0 0 decimal byte offset from address 0 of SD card

-b:bytes 512 size of file.dat number of bytes to read or write

-h display on-line help

El Camino GmbH 16

SD BUS Core - with Avalon Interface

can be found at the end of this document. The SPI mode chip select, as

well as the card detect and write protect switch signals can each be rout-

ed to one of two connector pins. This allows to cascade up to two SD

prototyping boards. In such a cascaded configuration some signals need

to be routed individually. Soldering bridges allow to put individual pro-

totyping boards into an A or B configuration and de-activate the pull-up

resistors on one of them. On a request basis, the prototyping boards can

be outfitted with connectors that support cascading.

The following table lists the signal mapping.

The SD card connector on older Altera Nios II Embedded

Evaluation Kit (NEEK) has only one data line connected

(SD_DAT[0]). These NEEKs therefor only supports the 1-

bit mode of this core and is limited to about one fourth of

the maximum data throughput performance. Because of the buffers in

the SD signal paths the timing for high speed mode cannot be met on

the NEEK.

Custom

Solutions

Please contact El Camino if you require any custom solutions based on

this IP.

Table 7: J2B Pin Descriptions

J2B

Connector

Pin

Schematic

Signal

Connect to IP Core

Signal
SD/MMC Pin Function - SPI Bus Mode Function - SD Bus Mode

3 SD_SD1 SD_DAT[2] 9 Reserved Data Line [Bit 2]

4 SD_CMD SD_CMD 2 Host to Card Commands and Data Command/Response

5 SD_D1 SD_DAT[1] 8 Reserved Data Line [Bit 1]

6 SD_CLK SD_CLK 5 Clock Clock

7 SD_SWWP_A WP (default)

8 SD_DAT SD_DAT[0] 7 Card to Host Data and Status Data Line [Bit 0]

9 SD_SWWP_B

11 SD_SWCI_A CDn (default)

12 SD_D3CS_A SD_DAT[3] (default) 1 Chip Select (Active Low) Card Detect/Data Line [Bit 3]

13 SD_SWCI_B

14 SD_D3CS_B 1 Chip Select (Active Low) Card Detect/Data Line [Bit 3]

El Camino GmbH 12

SD BUS Core - with Avalon Interface

El Camino
Training - Engineering - Consultancy

El Camino GmbH

Landshuter Str. 1

84048 Mainburg

Germany

Telefone +49-8751-8787-0

Telefax +49-8751-8787-10

E-mail: info@elca.de

http://www.elcamino.de

El Camino GmbH Training - Engineering - Consultancy, DIGILAB 10K10, DIGILAB picoMAX, DIGILAB

10Kx240, DIGILAB 20Kx240, DIGILAB megAPEX and other names of El Camino products, product fea-

tures and services are trademarks and/or service marks of El Camino GmbH in Germany and other

countries. Altera, Cyclone, Arria, Stratix, Quartus, NIOS and other names of Intel products, product fea-

tures and services are trademarks and/or service marks of Intel Corporation in the United States and

other countries. Other product and company names mentioned in this document may be the trade-

marks of their respective owners.

No warranties: This documentation is "as is" without any express or implied warranty of any kind in-

cluding warranties of merchantability, no infringement of intellectual property or of fitness for any par-

ticular purpose. In no event shall El Camino or its suppliers be liable for any damages whatsoever

(including, without limitation, damages for loss of profits, business interruption or loss of information)

arising out of the use of or inability to use this documentation, even if El Camino has been advised of

the possibility of such damages. Because some jurisdictions prohibit the exclusion or limitations of lia-

bility for consequential or incidental damages, some of the above limitations may not apply to you. El

Camino further does not warrant the accuracy or completeness of the information, text, graphics or

other items contained in this document. El Camino may make changes to these materials, or to the

products described therein, at any time without notice. El Camino makes no commitment to update

this document.

Copyright© 2019 El Camino GmbH. All rights reserved

Notes:

	General Description
	Features
	Applications
	Deliverables
	Architecture Specification
	The SD Bus core has the following interfaces:

	Integration into Qsys System
	Connecting the Core to an SD Card
	Register Model
	Register Description

	Resource Utilization and Performance
	Timing Requirements

	Nios II Software Support
	Basic Concept
	Simple Flash Access
	Fine Grained Flash Access

	Linux Software Support
	Command Line Tool
	Prototyping Hardware
	Custom Solutions
	Notes:

